Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. microbiol ; 45(3): 892-901, July-Sept. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-727018

ABSTRACT

In response to demand from industry for microorganisms with auspicious biotechnological potential, a worldwide interest has developed in bacteria and fungi isolation. Microorganisms of interesting metabolic properties include non-pathogenic bacteria of the genus Clostridium, particularly C. acetobutylicum, C. butyricum and C. pasteurianum. A well-known property of C. butyricum is their ability to produce butyric acid, as well as effectively convert glycerol to 1,3-propanediol (38.2 g/L). A conversion rate of 0.66 mol 1,3-propanediol/mol of glycerol has been obtained. Results of the studies described in the present paper broaden our knowledge of characteristic features of C. butyricum specific isolates in terms of their phylogenetic affiliation, fermentation capacity and antibacterial properties.


Subject(s)
Biotechnology/methods , Butyric Acid/metabolism , Clostridium butyricum/metabolism , Glycerol/metabolism , Industrial Microbiology , Propylene Glycols/metabolism , Biotransformation , Cluster Analysis , Clostridium butyricum/classification , Clostridium butyricum/growth & development , Clostridium butyricum/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Phylogeny , /genetics , Sequence Analysis, DNA
2.
Electron. j. biotechnol ; 17(2): 72-78, Mar. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-714275

ABSTRACT

Background 1,3-Propanodiol (1,3-PD), is used in the production of polytrimethylene terephthalate (PTT), an aromatic polyester that exhibits high elastic recoveries. It is also employed as a supplement with low solidification properties, a solvent and a lubricant in the formof propylene glycol. 1,3-PD is effectively synthesized by a microbiological way from crude glycerol. The main problem of this technology is using a high concentration of glycerol, which is a limiting factor for bacteria cells growth (especially in batch fermentation). Results In this work, the influence of different glycerol concentration in batch fermentation on Clostridium butyricum DSP1 metabolism was investigated. The biomass was concentrated for two times with the use of membrane module (in case of increasing kinetic parameters). Increased optical density of bacteria cells six times increased the productivity of 1,3-PD in cultivation with 20 g/L of glycerol at the beginning of the process, and more than two times in cultivation with 60-80 g/L. Also the possibility of complete attenuation of 140 g/L of crude glycerol in the batch fermentation was investigated. During the cultivation, changes of protein profiles were analyzed. The most significant changes were observed in the cultivation in the medium supplemented with 80 g/L of glycerol. They related mainly to the DNA protein reconstructive systems, protective proteins (HSP), and also the enzymatic catalysts connected with glycerol metabolic pathway. Conclusions The application of filtration module in batch fermentation of crude glycerol by C. butyricum DSP1 significantly increased the productivity of the process.


Subject(s)
Propylene Glycols/chemical synthesis , Clostridium butyricum , Glycerol/metabolism , Kinetics , Biomass , Culture Media , Proteomics , Fermentation , Filtration/methods , Heat-Shock Proteins
SELECTION OF CITATIONS
SEARCH DETAIL